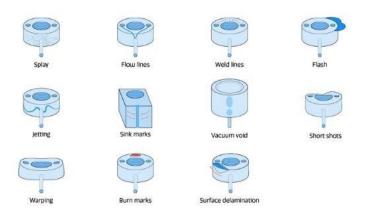


Safely Navigating Innovative Cooling Strategies in Plastic Injection Molding

WEBINAR June 18, 2025



- Cooling in plastic injection molds: challenges and opportunities
- Project description and motivation
- Generative cooling design with SimForm
- 3D printing of conformally cooled inserts with Mantle
- PulseCooling with CITO
- Compare simulation with experiment
- Conclusion

Importance of Cooling

- Up to 80% of the cycle is the cooling stage
- Non-uniform cooling leads to part defects

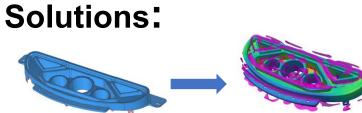
Injection Molding Defects

"Part defects can add **42%** to the length of the mold trial as the team tries to troubleshoot and correct the issue" -**Tech-Clarity**

"Molders estimate a short cycle to win the job and then hope for some magic for the mold to meet this cycle time." -Injection Molding Expert

Challenges:

Shortening lead-times


Skilled labor shortage

Sustainability and energy reduction goals

Traditional manufacturing limitations

Automated Toolmaking (Mantle)

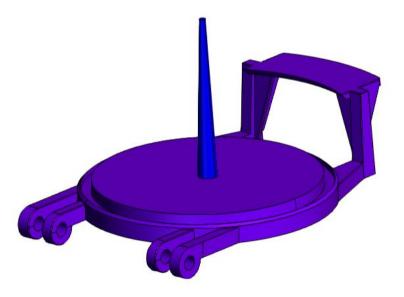
Simulation & Generative design (SimForm)

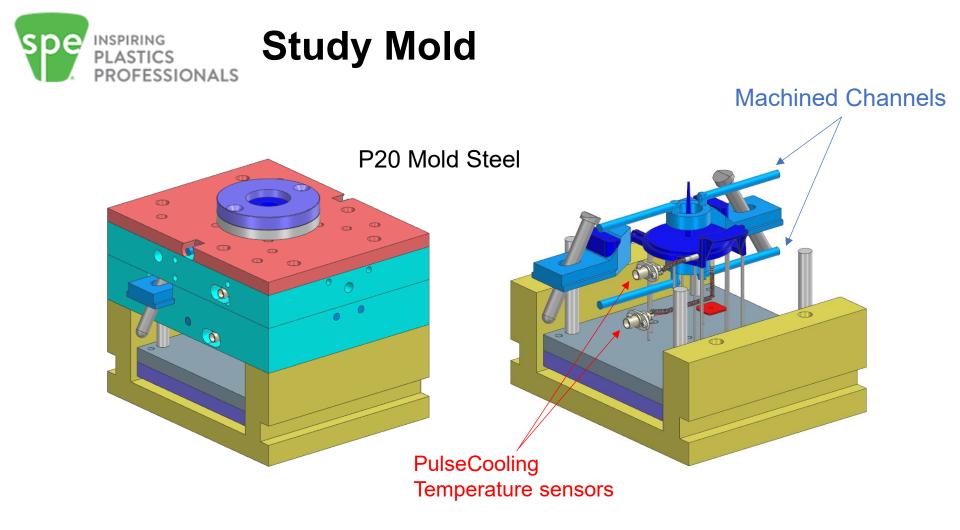
Closed-loop control (CITO)

Project Description

Collaboration between SimForm, Mantle, and CITO

- Present these three technologies
- Demonstrate how they address these challenges
- Showcase how these technology offerings can work together to produce a complete solution





CITO Thaw Snap Lid

- 30.5 g
- Nylon 1033HL 30% Glass Filled

Density	1,380 kg/m ³
Thermal Conductivity	0.28 W/m-C
Specific Heat	1,670 J/kg-C

Processing Conditions

Injection temperature	280 °C
Ejection temperature	72 °C
Target mold temperature	62 °C
Water temperature	4 °C
Water flow rate	2.1 GPM
Conventional Fill + Pack time	13 s
Conventional Cooling time	35 s
PulseCooling Fill + Pack time	11 s
PulseCooling Cooling time	18 s

How do we simulate this?

Mold Cooling with SimForm by Maya HTT

Maya HTT Software-Driven Engineering Solutions for 40+ years

#1 Worldwide Partner Award for Siemens Digital Industries Software

75% of staff are Scientists and Engineers

35+ Software modules authored for Siemens

Find out more

© Copyright 2025 Maya HTT, Ltd. All rights reserved.

What is SimForm?

OEMs / Suppliers

Create manufacturing-ready plastic part designs with fewer engineering iterations

Injection/Compression Molders

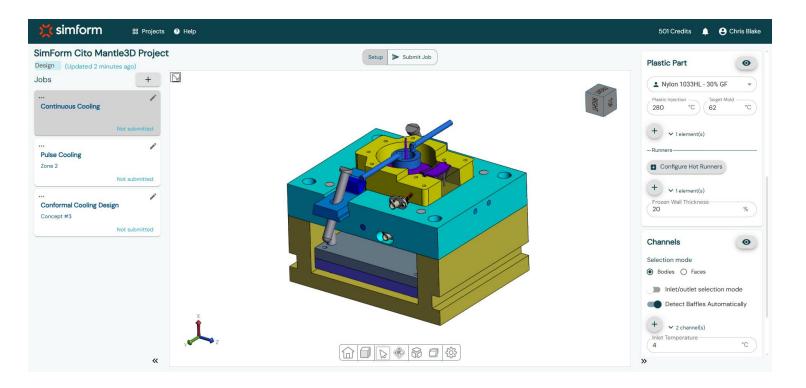
Optimize production by reducing cooling cycle time

Mold Makers

Ensure part quality with uniform temperatures and no hot spots

- In less than 15 minutes, confidently evaluate:
 - Part and mold temperature
 - Cooling channel placement
 - Cooling time
- Save time and money by:
 - Avoiding overdesigns and redesigns
 - Reducing cycle time
 - Justifying the use of more expensive inserts or conformal cooling

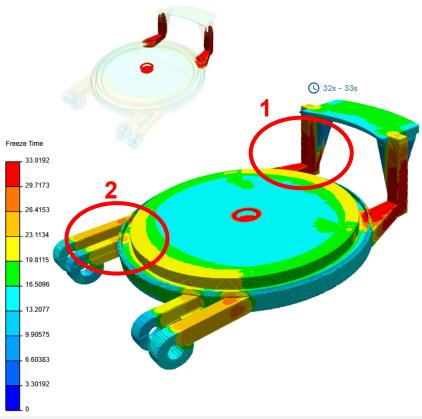
SimForm is mold simulation everyone can use.

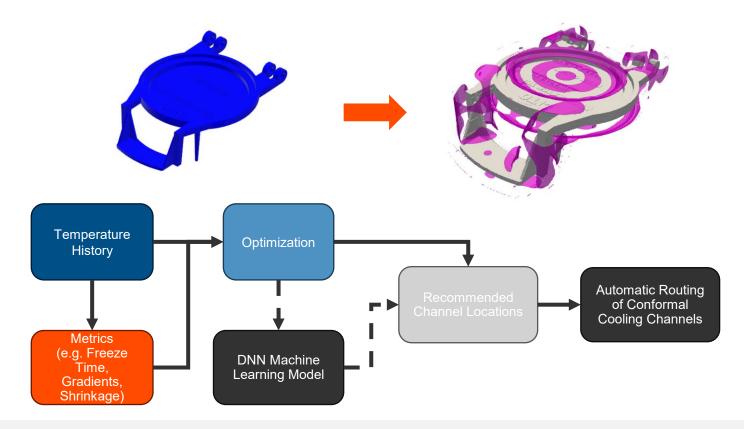


Quality Parts Need Effective Cooling

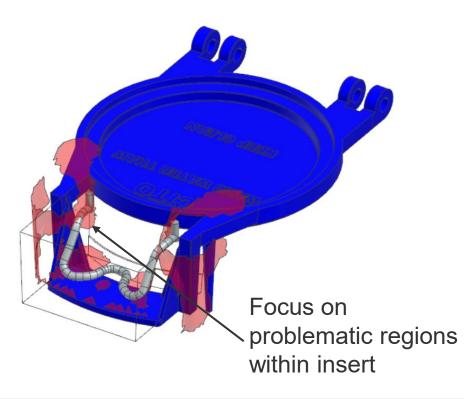
Develop Better Plastic Products and Tools Faster with SimForm

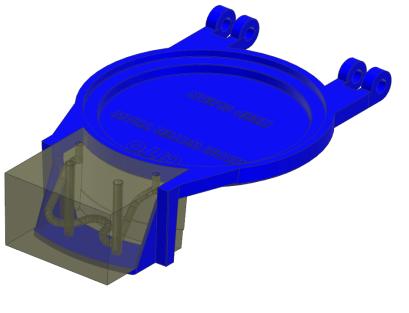
SimForm Setup of Study Mold



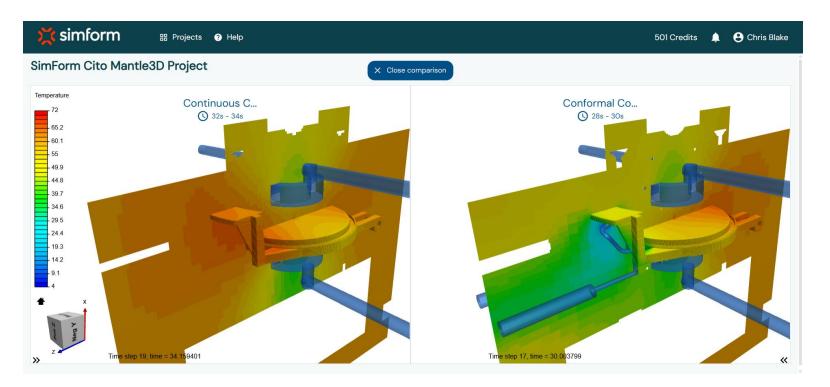

Continuous Cooling Simulation

- Bottleneck study
 - 14% cooling time reduction opportunity
 - If the section 1 highlighted is fixed, Pack & Cooling time can be reduced to from 32.5 sec to 28 sec


Hot spot 1 32.5 s Hot spot 2 28.0 s (-14%)	sis Location	Cooling time
Hot spot 2 28.0 s (-14%	Hot spot 1	32.5 s
	Hot spot 2	28.0 s (-14%)
Rest of the part 22.0 s (-32%	Rest of the	art 22.0 s (-32%)

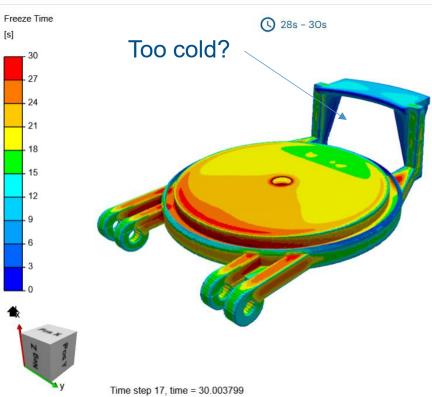


Generative Design of Cooling Channels



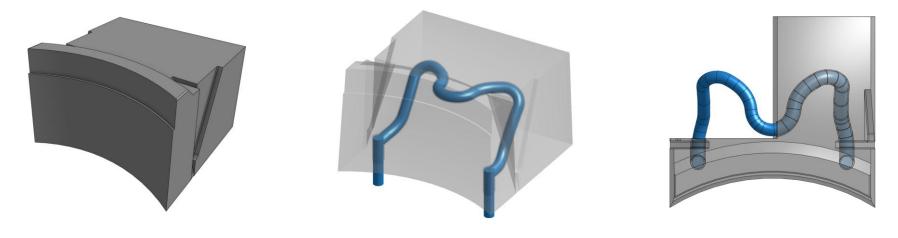
Conformal Cooling Insert Design

Part & Mold Temperatures with Conformally Cooled Insert



Cycle Time Improvement with Conformal Cooling

- Pack & Cool time: 28 s
 - 4.5 s / **14% reduction**
- Local freeze time

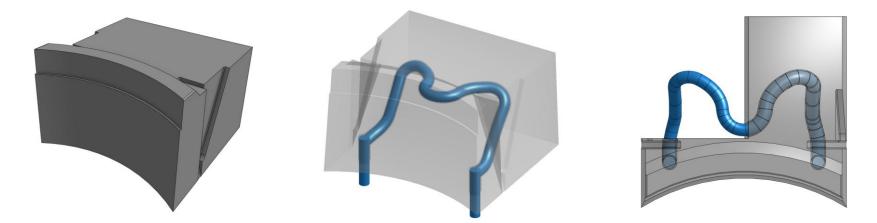


 Hot Spot 1 brought to same level as Hot Spot 2

We have a conformal design...

14% cycle time reduction

How do we build this?



Introduction to **MANTLE**

Toolmaking Reinvented

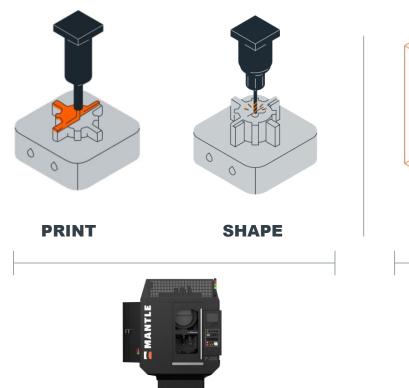
CONFORMALLY COOLED INSERT How do we build this?

1.6 x 1.6 x 1.1"

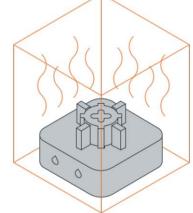
Printed in H13 Tool Steel

MANTLE'S AUTOMATED TOOLMAKING SYSTEM EXPLICITLY DESIGNED FOR TOOLING

Combines CNC machining, 3D printing, and advanced software


Produces precision tool steel components

Benefit	S
Ö	Save Time
: (\$): (\$):	Save Money
囫	Optimize Toolmaker Time
ক্তি	Accelerate Validation
1@1 288	Increase In-house Capacity
Ś	Improve Cycle Times


HOW IT WORKS

The solution includes:

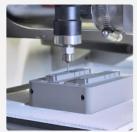
PRINT SHAPE SINTER

Printer

SINTER

Furnace

HOW IT WORKS: PASTE


H13 Tool Steel

420 Stainless Steel

HOW IT WORKS: PRINT + SHAPE

// Printer

TECHNOLOGY COMPONENTS

SINTER BODY

SHRUNK 9%

AFTER SINTERING

TECHNOLOGY RESULT

1. SINKER EDM FINISH

1-3 um Ra / Charmilles 26 / D2

2. BEST IN CLASS PRECISION

+/- .001" per inch

3. FINE FEATURES

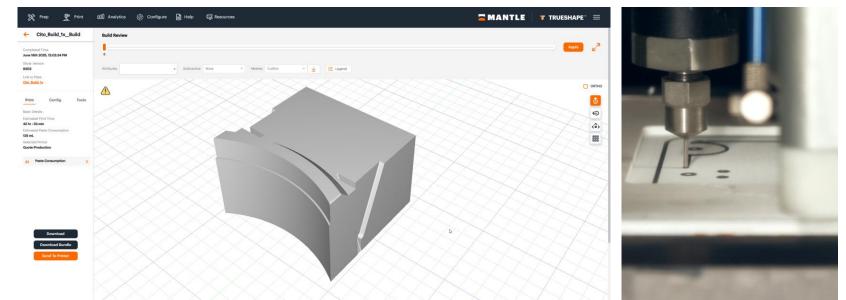
.003" corner radii (EDM sharp)


4. STABLE, DURABLE TOOL STEELS

H13 Tool Steel & 420 Stainless

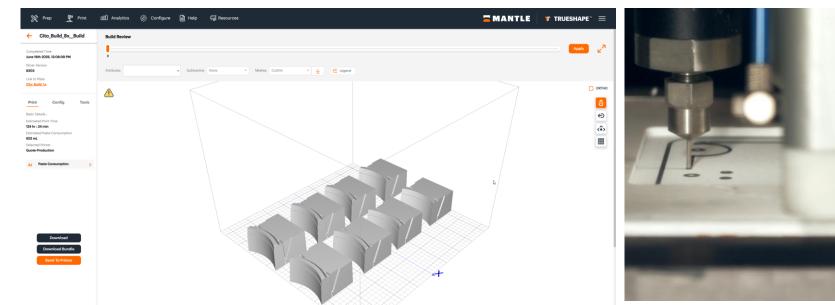
5. EASE OF USE

No programming required


6. CONFORMAL COOLING

WHAT OUR CUSTOMERS REALIZE:

CITO CONFORMALL COOLED INSERT - 1x


Print time: 40 hrs (1.6 days)

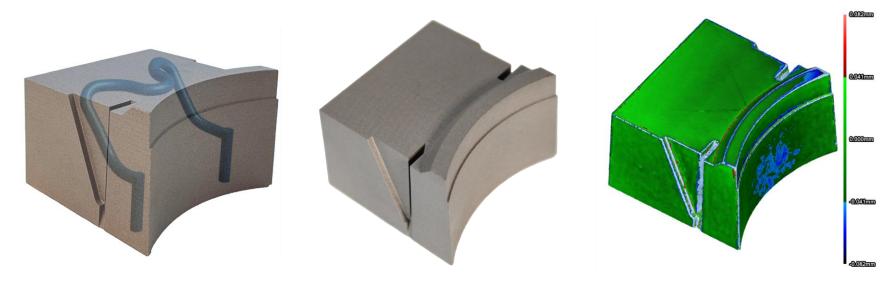
Sinter time: 42 hrs (1.75 days)

Cost: \$800 (fully burdened)

Completely unattended process!

CITO CONFORMALL COOLED INSERT - 8x

Print time: 124 hrs (5.1 days)


Sinter time: 42 hrs (1.75 days)

Cost: \$278 (fully burdened)

Economies of scale

Completely unattended process!

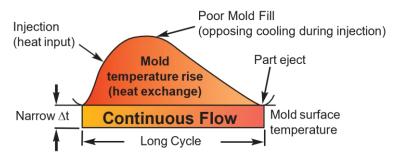
Next steps:

Send to CITO for finishing, (grinding and ejector pins) and testing!

Can we reduce the cycle time further?

PulseCooling by CITO

High Performance Process Control Systems


Quality Molding at a Reduced Cost

Conventional "Cooling"

No direct control of the Mold SURFACE Temperature

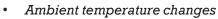
Continuous Flow Controllers DO NOT Compensate for:

- Ambient temperature changes
- Water temperature changes
- Water supply pressure changes
- Back pressure changes
- Platen and machine temperature changes
- Partial plant shut down
- Over cooling during cycle interruptions
- Part geometry vs. cooling channel layout
- Melt temperature variations

Results of Continuous Flow - Uneven Cooling:

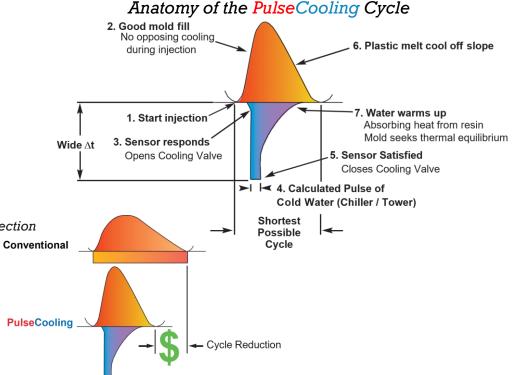
- Induced stress into molded part
- Post ejection warping
- Hot / Cold spots in the mold
- Thermal expansion Component Damage
- Inconsistent Heat Exchange

- Poor mold fill
- Inconsistent part quality Uncontrolled Variables
- Mold temperature drift Temperature Variations
- Heated water slows heat removal Longer cycles
- UNPREDICTABLE PARTS AFTER EJECTION


Control Adjustments are always Retroactive in response to Visual / Dimensional changes You are the controller 24/7

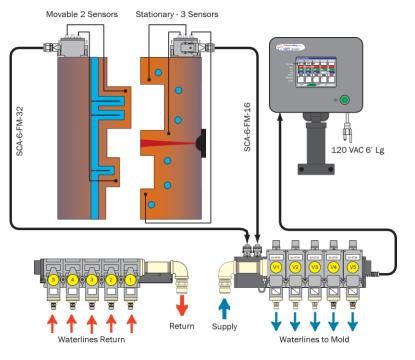
PulseCooling

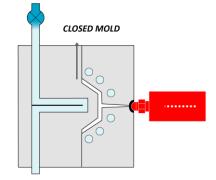
The PulseCooling Controller Automatically makes Pro-Active Adjustments to Maintain Mold Surface Temperature


Compensating For:

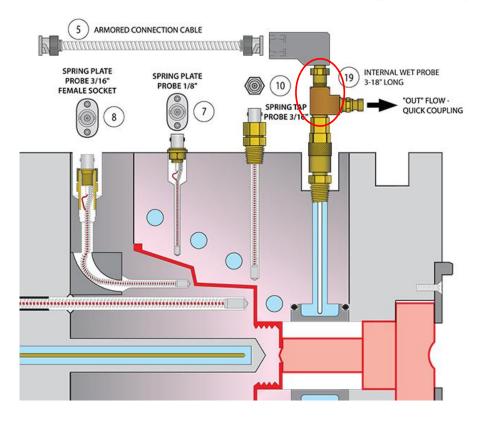
- Water temperature changes
- Water supply pressure changes
- Back pressure changes
- Cycle changes (Manual Unloading)
- Platen and machine temperature changes
- Day and night shift changes
- Partial plant shut down (Pressure Changes)

Resulting In:


- Consistent Mold Temperature Profile
- Increased Heat Exchange
- Excellent Mold fill No opposing resistance during injection
- No uncontrolled Temperature Drift
- Efficient Heat Removal -High Δt
- Cycle Time Savings 15% Initial Average
- CONSISTENT PART QUALITY 24/7!



How It Works


• Melt is introduced into Tool, Melt Energy Warms Molding Surface

PulseCooling.com

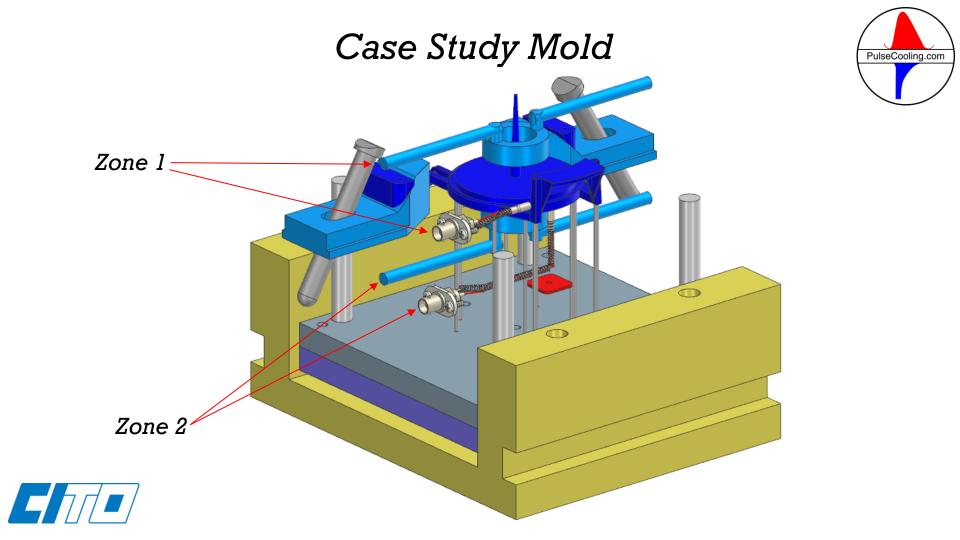
- Sensor responds to temperature rise
- Sensor opens Cooling Valve once Setpoint is reached
- Cooling comes directly from Chiller or Tower
- Full Flow Turbulent Cooling until Sensor Setpoint is satisfied
- Cooling Valve closes, heat dissipates uniformly
- Part Ejection
- Complete Repeatability 24/7

PulseCooling

Adaptation to Existing Tooling

PulseCooling can easily be adapted to existing tooling.

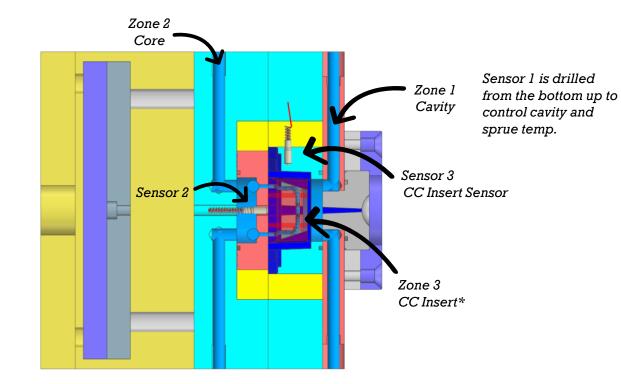
PulseCooling.com


If you do not want to machine sensor holes, or simply do not have the room, accomplish this by using our Internal or External Wet Sensors to be placed directly in the outgoing waterline

PulseCooling Bottom Line

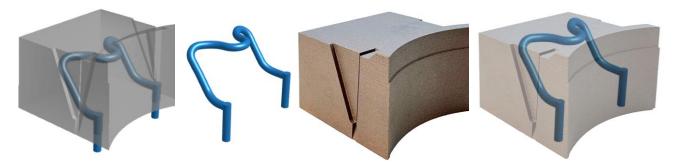
- DIRECT CONTROL OVER MOLD SURFACE TEMP
- QUALITY MONITORING AND CONTROL DURING THE MOLDING PROCESS
- CONSISTENTLY HIGHER QUALITY PARTS
- CONSISTENTLY FASTER CYCLE TIMES
- HIGHER PRODUCTION YIELD
- FRACTION OF OPERATIONAL / MAINTENANCE COST
- REDUCED CAPITAL INVESTMENT
- EXCELLENT R.O.I.

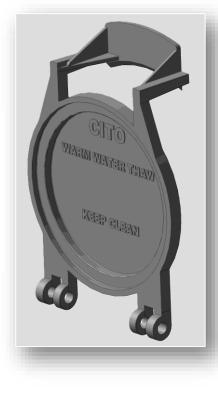
PulseCooling vs Conventional Cooling Process Analysis


PulseCooling.com

Part # / Name:	CT-5620 T	haw Snap Lid							
Tool #:	CT-5620							Nearly	
Material:	Nylon 1033HI	L 30% Glass Filled			Shot Size:	33	Grams	50%!!	
Melt Temp:	520-550	°F	_		Final Weights				
			-		Runner/Gate	1.5	grams		
Mold Temp:	140-160	°F	_		Part	30.5	grams		CIRA
									WARRAN
Cooling / Proc	ess Data								WARM WATER THAN
	Target M	lold Temp (°F)	Controller S	et Point (°F)	Cooling supply	System Pressure	Fill / Pack Tim	e <u>Cooling Time</u>	a antity
Cooling Method	Stationary	Movable	Stationary	Movable	Temp (°F)	PSI	Seconds	Seconds	
Thermolator	140	150	145	145	40	40	13	35	Keen -
					1		-		KEEP CLEAN
PulseCooling	140	150	140	150	40	40	11	18	
				•					
				Overa	Il Cycle Time		$\left(\right)$		
		Conventional	48	sec		PulseCooling	29	_sec	
		Com alexador	a. Carla di			- 40 0/ h			
			-		-	40% when us	0		
			• •			ermolator. Pa			
		adjusted to	reduce cy	cle time w	rhile still mai	ntaining the fi	nal dimensi	onal	
		tolerances p	orovided f	rom the pa	art drawing.	Final part app	pearance wa	S	
		also monito	red as we	ll as sink, f	lash and war	p areas.			

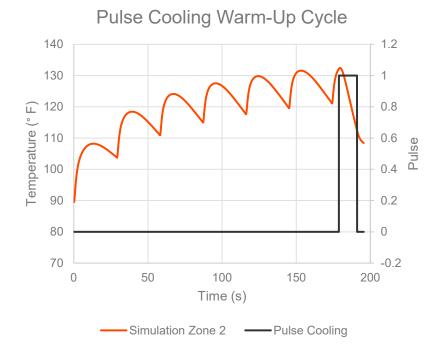
Case Study Mold



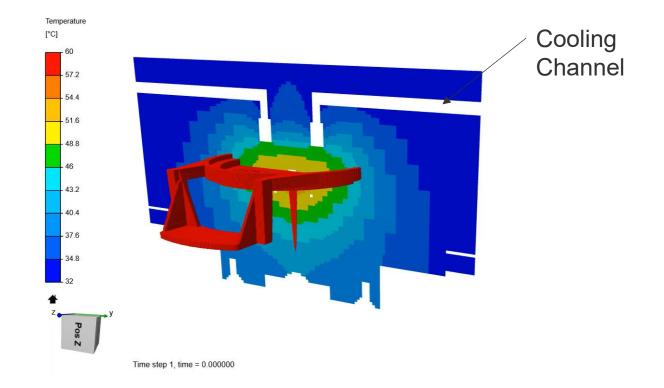

One Step Further Conformal Cooling

Now that we have a preliminary design, our next step is to compare running the conformally cooled insert with and without PulseCooling to show the true output of these three technologies put together.

Printed by Mantle H13 Tool Steel

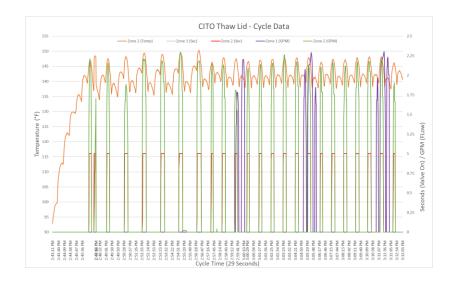


Predict the Improvement with PulseCooling

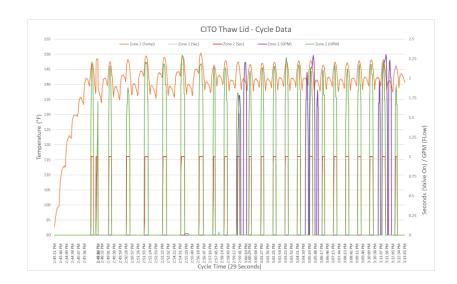

Mold Cooling with SimForm by Maya HTT

Preliminary Results

- Prove out the cycle time savings of PulseCooling
- Optimize the set point
- Optimize the sensor location


Preliminary Results

- Generative design of conformal cooling insert
- Fabrication of insert using novel 3D printing technology
- Closed-loop PulseCooling to:
 - Avoid overcooling
 - Reduce cycle time



• Experimental Results:

- With / Without Conformal Cooling printed by **Mantle**
- With / Without PulseCooling
- Experimental correlation
- Using SimForm, optimal selection of:
 - Set point
 - Sensor location
 - Water temperature

Contact Us

Book a free meeting to optimize your next mold design

Chris Blake

Maya HTT

christopher.blake@mayahtt.com 514-369-5706 x287

Mantle3d.com

Ethan Rejto

Ethan.rejto@mantle3d.com 978/844-3161

PRODUCTS, INC. Free consultation on the first project for new customers <u>max@citoinc.com</u> <u>rico@citoinc.com</u> <u>www.citoinc.com</u> 920-261-2606